Refine Your Search

Topic

Search Results

Journal Article

Analysis of the Water Management on a Full Virtual Car Using Computational Fluid Dynamics

2020-03-23
Abstract The appearance of an automobile is anything but unimportant for the owner. This applies to the acquisition as well as the keeping. In this context, the avoidance of corrosion is a fundamental part of the user’s satisfaction of a company. The body design can be modified to optimize drainage and reduce the risk of corrosion, improving the owner’s satisfaction with the purchase of the automobile. During the proof of concept of water management, as part of the process of development, physical prototypes are state of the art. At this point in the development process, every necessary change is expensive and time consuming. Virtual methods are able to support the development in earlier steps and thus reduce costs. The conventional Computational Fluid Dynamics (CFD) methods could not handle the simulation of a full car in the rain or water passage properly due to much higher computation efforts and deviations from the experiments.
Journal Article

Application of Taguchi-Based Grey System for Multi Aspects Optimization on Wire Electric Discharge Machining of Aluminum-Graphene Nanoplatelets Composites

2021-10-11
Abstract Aluminum Metal Matrix Composite (AMMC) materials have loftier individualities and are known as an alternative material for a range of aerospace and automotive engineering applications. Reinforcement inclusion makes the components tougher, resulting in low performance of machining by traditional conservative machining practices. The present study presents a detailed review of the machinability of AMMC (Pure Aluminum + Graphene nanoplatelets) using Wire Electric Discharge Machining (WEDM). For WEDM of AMMC, a multi-objective optimization method is proposed to evaluate possible machining parameters in order to achieve better machining efficiency. Taguchi’s approach to the design of experiments is used to organize the experiments. For performing experiments, an L27 orthogonal array was selected. Five input process variables were considered for this study. The Grey Relational Analysis (GRA) is used to achieve the best features of multi-performance machining.
Journal Article

Applications of the Finite Element Analysis for Determination of Failure Safety Margins of the Design of the Honda CTX700 Motorcycle Front Braking System

2023-02-15
Abstract The purpose of this article was to determine the failure safety margins of the front braking system of a Honda CTX700 motorcycle and to perform a substantive stress analysis on the system, as well as to verify the stresses using FEMAP. It should be noted that in this finite element analysis (FEA), the connections between components are modeled using linear-contact connections that exert forces on adjacent surfaces and are not trivially meshed as one solid with coincident grids with two different section material properties. The first part of the work involved accurately measuring the geometry of each part and three-dimensional (3D) modeling of all components. Measurements were taken via the trivial methods of using a ruler and caliper, and then the 3D model was generated in Solidworks by digitizing the geometric parameters. Some parts of the system were simplified in the 3D model to ensure proper meshing of the model.
Journal Article

Applying the Hilbert Envelope Method to Refine the Ultrasonic Technique for Piston Ring Oil Film Thickness Measurements in a Marine Diesel Engine

2022-04-21
Abstract The greatest frictional contributor in an internal combustion engine is the contact between the piston ring pack and cylinder liner. Therefore, an improved lubrication regime has the potential to raise engine efficiency while lowering emissions, aiding to meet environmental regulations. Previous ultrasonic measurements of the oil film thickness (OFT) between piston rings and the cylinder liner in a marine engine have been subject to several unexpected trends. This article refines the measurement to identify and remove these factors, the trends were found to have arisen due to the detection of ultrasonic reflections from the piston ring outside of the expected alignment zone. The extent of these undesired reflections is thought to be due to the liner thickness providing a relatively large distance for spreading of the ultrasonic wavefront.
Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

Assessing the Characterization for Multiple Cones and Cone Portions Utilizing X-Ray Diffraction in Single Point Incremental Forming

2023-12-06
Abstract Single point incremental forming (SPIF) is a robust and new technique. In the recent research scenario, materials properties such as microstructure, micro-texture analysis, and crystal structure can be accessed through characterization non-destructive techniques, e.g., scanning electron microscope (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). XRD is a non-destructive method for analyzing the fine structure of materials. This study explores how process variables such as wall angle, step size, feed rate, and forming speed affect the parts of large-, medium-, and small-sized truncated cones of aluminum alloy AA3003-O sheet. Several cone parts of truncated cones are used in this investigation to implement Scherrer’s method. The two primary determining factors peak height and crystallite size are assessed for additional analysis in the present research.
Journal Article

Assessing the Impact of Rubberized Asphalt on Reducing Hip Fracture Risk in Elderly Populations Using Human Body Models

2024-04-08
Abstract Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt.
Journal Article

Assessment of Tribological Characteristics of Low-Sulfur and Ultralow-Sulfur Diesel under Practical Load and Temperature Scenarios

2021-06-10
Abstract The lubricating properties of diesel are an imperative aspect for the optimal functioning of fuel injection components. Regulatory standards followed by refineries utilize accelerated wear testing methodologies. These tests provide indicative results for judging the lubricity but are not conclusive for determining wear in functional applications attributed to higher loads and other environmental factors. In the course of this article, a tribological evaluation was carried out on Low-Sulfur Diesel (LSD) and Ultralow Sulfur Diesel (ULSD) by utilizing modified test parameters incorporating higher loads and a more extensive gradient of temperature on High-Frequency Reciprocating Rig (HFRR) tribotester. The variance in the resultant coefficient of friction (COF) and wear scar concerning the change in parameters was observed as well as a comparative analysis was drawn between both test fuels.
Journal Article

Automotive Components Fatigue and Durability Testing with Flexible Vibration Testing Table

2018-04-07
Abstract Accelerated durability testing of automotive components has become a major interest for the ground vehicle Industries. This approach can predict the life characteristics of the vehicle by testing fatigue failure at higher stress level within a shorter period of time. Current tradition of laboratory testing includes a rigid fixture to mount the component with the shaker table. This approach is not accurate for the durability testing of most vehicle components especially for those parts connected directly with the tire and suspension system. In this work, the effects of the elastic support on modal parameters of the tested structure, such as natural frequencies, damping ratios and mode shapes, as well as the estimated structural fatigue life in the durability testing were studied through experimental testing and numerical simulations.
Journal Article

Battery Thermal Runaway Preventive Time Delay Strategy Using Different Melting Point Phase Change Materials

2023-10-11
Abstract The production of alternative clean energy vehicles provides a sustainable solution for the transportation industry. An effective battery cooling system is required for the safe operation of electric vehicles throughout their lifetime. However, in the pursuit of this technological change, issues of battery overheating leading to thermal runaways (TRs) are seen as major concerns. For example, lithium (Li)-ion batteries of electric vehicles can lose thermal stability owing to electrochemical damage due to overheating of the core. In this study, we look at how a different melting point phase change material (PCM) can be used to delay the TR trigger point of a high-energy density lithium-iron phosphate (LiFePO4) chemistry 86 Amp-hour (Ah) battery. The battery is investigated under thermal abuse conditions by wrapping heater foil and operating it at 500-W constant heat conditions until the battery runs in an abuse scenario.
Journal Article

Capturing the Impact of Fuel Octane Number on Modern Gasoline Vehicles with Octane Indices

2019-05-09
Abstract The need for high efficiency automotive engines has led to more complex air handling and fuel injection systems, higher compression ratios, more advanced combustion and aftertreatment systems, and the use of fuels with higher octane ratings. Higher octane fuels have a lower propensity to knock. This work studies the influence of changing fuel octane rating on two modern production gasoline vehicles, one with a naturally aspirated, port injected engine and the other with a turbocharged, direct injected engine, using fuels with four different octane number grades (with 85, 87, 91, and 93 anti-knock indices) and operated over a variety of driving cycles and temperature conditions. Unlike previous studies, this effort develops and demonstrates a methodology that isolates fuel effects on fuel consumption and provides a clear view of the octane impact on existing vehicles.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Cavitation Erosion Prediction at Vibrating Walls by Coupling Computational Fluid Dynamics and Multi-body-Dynamic Solutions

2021-08-24
Abstract Cavitation erosion caused by high-frequency vibrating walls can appear in the cooling circuit of internal combustion engines along the liners. The vibrations caused by the mechanical forces acting on the crank drive can lead to temporary regions of low pressure in the coolant with local vapor formation, and vapor collapse close to the liner walls leads to erosion damage, which can strongly reduce the lifetime of the entire engine. The experimental investigation of this phenomenon is so time consuming and expensive, which it is usually not feasible during the design phase. Therefore, numerical tools for erosion damage prediction should be preferred. This study presents a numerical workflow for the prediction of cavitation erosion damages by coupling a three-dimensional (3D) Multi-Body-Dynamic (MBD) simulation tool with a 3D Computational Fluid Dynamics (CFD) solver.
Journal Article

Characterization of Friction Stir Processed Aluminum-Graphene Nanoplatelets Composites

2020-01-23
Abstract The present study deals with the investigation on microstructural and mechanical properties of friction stir processed (FSPed) pure Aluminum (Al)-Graphene Nanoplatelets (GNPs) composites. Composite specimens such as castings were made by blending 0.5 wt.%, 1.0 wt.%, 1.5 wt.%, and 2.0 wt.% of GNPs in pure Al matrix using the ultrasonic-assisted stir casting technique (UASCT). Also for enhancement of mechanical properties via grain refinement the friction stir processing (FSP) has been employed, as well as mechanical properties like tensile strength and microhardness were evaluated. Moreover, the microstructural analysis were done using Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), transmission electron microscopy (TEM), and X-Ray Diffraction (XRD) examination were also performed for inspecting the changes occurred during synthesis of the fabricated composites after FSP.
Journal Article

Chemical Analysis of Deposits Separated from Blocked Fuel Filters

2021-10-25
Abstract Biodiesel was found to be the best candidate to replace diesel fuel mainly due to being renewable, biodegradable, and non-toxic and reduce greenhouse gases, which cause global warming. Nowadays, biodiesel is blended with diesel fuel in different concentrations depending on the country of usage and is used in diesel engines. Concerns about biodiesel were raised after premature fouling of fuel filters were reported before meeting their mileage requirement. Three filters from Brazil were analyzed using different techniques (Energy Dispersive X-Ray [EDX], Fourier Transform Infrared Spectroscopy [FTIR], Thermogravimetric Analysis [TGA], Time of Flight-Secondary Ion Mass Spectrometry [ToF-SIMS], and Gas Chromatography/Mass Spectrometry [GC/MS]) to understand the chemical composition of the filter deposits and highlight the main compounds responsible for the blockage.
Journal Article

Comparative Fretting Fatigue Life Evaluation between Critical Plane Based and Deviatoric Strain Amplitude Based Methods Corrected for Surface Wear Damage

2021-12-22
Abstract Fretting failure mode is commonly observed at the contact interface of mating parts, held together under normal load and subjected to vibratory and/or imbalanced system forces. This article presents the fretting fatigue life estimation of a complete flat-flat contact pair using a relatively new approach, i.e., deviatoric strain amplitude-based (SI) parameter, further combined with Ding’s empirical parameter D fret2, which considers the effect of resultant frictional work on fretting fatigue life. The results are compared with traditional critical plane-based methods like Smith-Watson-Topper (SWT) and Fatemi-Socie (FS). Observing high load-factor values corresponding to material yielding, non-linear material models are considered to account for possible plastic shakedown/ratcheting phenomenon. Overall good experimental correlation is observed for all three fatigue initiation methods, within a ±3N scatter band.
Journal Article

Comparative Multi-Axial High-Cycle Fatigue Analysis of Spot Weld Models Using Findley’s Damage Criteria

2022-10-14
Abstract High-cycle fatigue (HCF) is one of the main concerns for spot-welded structures, and finite element (FE)-based simulations have critical importance for the life assessment and design optimization. The accuracy of spot weld modeling methodologies has a key role in achieving the development objectives. This article presents a comparative study for HCF simulations of different spot weld modeling methodologies and their comparison with the test data. In this regard, HCF analyses based on Findley’s multi-axial damage model are conducted with a commercial software. Direct equivalenced spot weld modeling with and without offset adjustment, rigid spot weld, and rigid beam (single) spot weld methods are analyzed for overlapped sheet metals under axial cyclic loading. Two specimens with different thicknesses, spot weld diameters, and number of nuggets are simulated under six cyclic load cases: 2000-4000 N, 1400-2800 N, 1800-3600 N, 200-8000 N, 100-8300 N, and 200-6800 N.
Journal Article

Comparative Study on the Effect of Different Lubricating Oil Additives on the Tribological Properties of Bearing Steel

2020-01-23
Abstract The purpose of this article is to study the antifriction and anti-wear effect of GCr15 bearing steel under paraffin base oil and the base oil with two additives of T405 sulfurized olefin and nano-MoS2 and compare the synergistic lubrication effect of two different additives (MoS2 and T405) in paraffin base oil. The tribological properties of GCr15 bearing steel under different lubrication conditions were tested on a ball-on-disk tribometer. The three-dimensional profile of disk’s worn surfaces and the scanning electron microscope (SEM) micrographs of corresponding steel balls were analyzed at the same time. The wettability of lubricating oils on the surface of friction pairs and the dispersibility of MoS2 in base oil were characterized.
Journal Article

Comparative Study on the Fatigue Behavior of Jute-Wool Felt/Epoxy Hybrid and Glass Fiber/Epoxy Composite

2023-08-10
Abstract Currently, there is a growing tendency to incorporate natural fibers in composites due to their affordability, lightweight nature, and eco-friendliness. Researchers are continuously exploring new materials that offer improved mechanical properties for a broader range of applications. In this work, an experimental investigation on tensile and fatigue behavior of jute-wool felt-reinforced epoxy hybrid laminate is carried, in addition to an E-glass fiber-reinforced epoxy laminate that helps in comparison. Constant amplitude tensile fatigue test is conducted for 80%, 70%, and 60% of the ultimate load of respective composites at a stress ratio of 0.1 and frequency of 7 Hz for both laminates. The jute-wool felt composite showed good fatigue resistance. Though glass fiber composite showed higher tensile strength, jute-wool felt composite exhibits higher fatigue performance than glass fiber composites at higher stress levels.
X